1,925 research outputs found

    Mentat: An object-oriented macro data flow system

    Get PDF
    Mentat, an object-oriented macro data flow system designed to facilitate parallelism in distributed systems, is presented. The macro data flow model is a model of computation similar to the data flow model with two principal differences: the computational complexity of the actors is much greater than in traditional data flow systems, and there are persistent actors that maintain state information between executions. Mentat is a system that combines the object-oriented programming paradigm and the macro data flow model of computation. Mentat programs use a dynamic structure called a future list to represent the future of computations

    Producing approximate answers to database queries

    Get PDF
    We have designed and implemented a query processor, called APPROXIMATE, that makes approximate answers available if part of the database is unavailable or if there is not enough time to produce an exact answer. The accuracy of the approximate answers produced improves monotonically with the amount of data retrieved to produce the result. The exact answer is produced if all of the needed data are available and query processing is allowed to continue until completion. The monotone query processing algorithm of APPROXIMATE works within the standard relational algebra framework and can be implemented on a relational database system with little change to the relational architecture. We describe here the approximation semantics of APPROXIMATE that serves as the basis for meaningful approximations of both set-valued and single-valued queries. We show how APPROXIMATE is implemented to make effective use of semantic information, provided by an object-oriented view of the database, and describe the additional overhead required by APPROXIMATE

    PERTS: A Prototyping Environment for Real-Time Systems

    Get PDF
    PERTS is a prototyping environment for real-time systems. It is being built incrementally and will contain basic building blocks of operating systems for time-critical applications, tools, and performance models for the analysis, evaluation and measurement of real-time systems and a simulation/emulation environment. It is designed to support the use and evaluation of new design approaches, experimentations with alternative system building blocks, and the analysis and performance profiling of prototype real-time systems

    Scheduling real-time, periodic jobs using imprecise results

    Get PDF
    A process is called a monotone process if the accuracy of its intermediate results is non-decreasing as more time is spent to obtain the result. The result produced by a monotone process upon its normal termination is the desired result; the error in this result is zero. External events such as timeouts or crashes may cause the process to terminate prematurely. If the intermediate result produced by the process upon its premature termination is saved and made available, the application may still find the result unusable and, hence, acceptable; such a result is said to be an imprecise one. The error in an imprecise result is nonzero. The problem of scheduling periodic jobs to meet deadlines on a system that provides the necessary programming language primitives and run-time support for processes to return imprecise results is discussed. This problem differs from the traditional scheduling problems since the scheduler may choose to terminate a task before it is completed, causing it to produce an acceptable but imprecise result. Consequently, the amounts of processor time assigned to tasks in a valid schedule can be less than the amounts of time required to complete the tasks. A meaningful formulation of this problem taking into account the quality of the overall result is discussed. Three algorithms for scheduling jobs for which the effects of errors in results produced in different periods are not cumulative are described, and their relative merits are evaluated

    Imprecise results: Utilizing partial computations in real-time systems

    Get PDF
    In real-time systems, a computation may not have time to complete its execution because of deadline requirements. In such cases, no result except the approximate results produced by the computations up to that point will be available. It is desirable to utilize these imprecise results if possible. Two approaches are proposed to enable computations to return imprecise results when executions cannot be completed normally. The milestone approach records results periodically, and if a deadline is reached, returns the last recorded result. The sieve approach demarcates sections of code which can be skipped if the time available is insufficient. By using these approaches, the system is able to produce imprecise results when deadlines are reached. The design of the Concord project is described which supports imprecise computations using these techniques. Also presented is a general model of imprecise computations using these techniques, as well as one which takes into account the influence of the environment, showing where the latter approach fits into this model

    Scheduling periodic jobs using imprecise results

    Get PDF
    One approach to avoid timing faults in hard, real-time systems is to make available intermediate, imprecise results produced by real-time processes. When a result of the desired quality cannot be produced in time, an imprecise result of acceptable quality produced before the deadline can be used. The problem of scheduling periodic jobs to meet deadlines on a system that provides the necessary programming language primitives and run-time support for processes to return imprecise results is discussed. Since the scheduler may choose to terminate a task before it is completed, causing it to produce an acceptable but imprecise result, the amount of processor time assigned to any task in a valid schedule can be less than the amount of time required to complete the task. A meaningful formulation of the scheduling problem must take into account the overall quality of the results. Depending on the different types of undesirable effects caused by errors, jobs are classified as type N or type C. For type N jobs, the effects of errors in results produced in different periods are not cumulative. A reasonable performance measure is the average error over all jobs. Three heuristic algorithms that lead to feasible schedules with small average errors are described. For type C jobs, the undesirable effects of errors produced in different periods are cumulative. Schedulability criteria of type C jobs are discussed

    08071 Abstracts Collection -- Scheduling

    Get PDF
    From 10.02. to 15.02., the Dagstuhl Seminar 08071 ``Scheduling\u27\u27 was held in the International Conference and Research Center (IBFI), Schloss Dagstuhl. During the seminar, several participants presented their current research, and ongoing work and open problems were discussed. Abstracts of the presentations given during the seminar as well as abstracts of seminar results and ideas are put together in this paper. The first section describes the seminar topics and goals in general. Links to extended abstracts or full papers are provided, if available

    Maternal obesity has little effect on the immediate offspring but impacts on the next generation

    Get PDF
    Maternal obesity during pregnancy has been linked to an increased risk of obesity and cardiometabolic disease in the offspring, a phenomenon attributed to developmental programming. Programming effects may be transmissible across generations through both maternal and paternal inheritance, although the mechanisms remain unclear. Using a mouse model, we explored the effects of moderate maternal diet-induced obesity (DIO) on weight gain and glucose-insulin homeostasis in first-generation (F1) and second-generation offspring. DIO was associated with insulin resistance, hyperglycemia and dyslipidemia before pregnancy. Birth weight was reduced in female offspring of DIO mothers (by 6%, P = .039), and DIO offspring were heavier than controls at weaning (males by 47%, females by 27%), however there were no differences in glucose tolerance, plasma lipids, or hepatic gene expression at 6 months. Despite the relative lack of effects in the F1, we found clear fetal growth restriction and persistent metabolic changes in otherwise unmanipulated second-generation offspring with effects on birth weight, insulin levels, and hepatic gene expression that were transmitted through both maternal and paternal lines. This suggests that the consequences of the current dietary obesity epidemic may also have an impact on the descendants of obese individuals, even when the phenotype of the F1 appears largely unaffected

    Processing and Transmission of Information

    Get PDF
    Contains research objectives and reports on three research projects.National Aeronautics and Space Administration (Grant NsG-334)Joint Services Electronics Programs (U. S. Army, U.S. Navy, and U.S. Air Force) under Contract DA 28-043-AMC-02536(E

    Processing and Transmission of Information

    Get PDF
    Contains reports on four research projects.National Aeronautics and Space Administration (Grant NsG-334)Joint Services Electronics Programs (U. S. Army, U.S. Navy, and U.S. Air Force) under Contract DA 28-043-AMC-02536(E
    • …
    corecore